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Waveguide Discontinuity Analysis with
a Coupled Finite–Boundary

Element Methoc\

KE LI WU, GILLES Y. DELISLE, SENIOR MEMBER, IEEE, DA GANG FANG,

AND MICHEL LECOURS, SENIOR MEMBER., IEEE

.4stracf — A new numerical method for the anatysis of wavegnide dls-

continuities is proposed. The proposed approach is based upou the cou-

pling of the finite element and boundary element methods. The respective

merits of these methods are extracted to yield much faster solution and to

enhance computation efficiency. A general procednre is deseribed using a

quadratic elements approximation, and the validity and efficiency of the

method are demonstrated in the cases of a 3-port H-plane ferrite wave-

goide Y junction and of a right-angle corner bend with and without

dielectric loading. Comparisons of the present results with those obtained

using the finite element approach are made and shown to be in good

agreement. An experimental result is afso presented and the validity of the

technique can he easily verified.

I. INTRODUCTION

M ANY NUMERICAL and analytical methods are

now available to solve the problem of waveguide

discontinuities, a situation which arises very often in the

design of microwave components or circuits. Some of the

numerical methods apply only to specific waveguide

boundaries [1], [2] due to the choice of the Green’s func-

tion, and some are restricted to the analysis of particular

shapes of junctions and obstacles inside the waveguide [3],

[4]. Numerical methods which can solve arbitrary wave-

guide configurations are also available and one of these

approaches is based on the finite element method (FEM)

[5]-[7], which is a very powerful technique that can handle

discontinuities of arbitrary shape, including anisotropic

waveguide components such as ferrite junction circulators.

However, this method requires very large computer mem-

ory space and considerable computation time to yield a

valid solution to the final matrix equation. More recently,

the application of the boundary element method (BEM) [8]

to waveguide discontinuity problems has been proposed

[9], [10]. Because the BEM calls for a solution which makes

it possible to decrease by one the dimension of the original

problem, it requires much less computer memory and the

computation time is also reduced appreciably. Neverthe-
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less, it is quite difficult to treat a problem involving

complex or anisotropic media with the BEM.

In this paper, the FEM and 13EM techniques are cou-

pled together to obtain a new method, called the coupled

finite-boundary element method (CFBM), which has the

merits of both the FEM and the BEM and can solve

extremely complex problems without requiring excessive

computer memory and computation time. Using this

method, only the complex media subdomains which could

be constituted by 10SSYor anisotropic materials need to be

treated with the finite element approach. Elsewhere, the

boundary element method is used on the boundary to take

into account the waveguide configuration.

The application of the CFBM to a particular problem is

quite straightforward. First, each complex subdomain is

approximated using finite elements, and the field in each

element is expressed using an interpolation technique. The

Galerkin procedure is then used to obtain the relation

between the fields on the complex media subdomain and

the normal derivatives of the fields on its boundary. Subse-

quently the BEM is used to obtain the boundary integral

equation on the complementary homogeneous domain

which leads to a system equation. With the help of the

analytical expression of the fields and of their normal

derivatives on the ports, the two system equations are

combined using the continuity on the interface of two

different subdomains, and a final matrix equation is ob-

tained.

The validity of the CFBM will be demonstrated with

illustrative examples. The results obtained with the pro-

posed CFBM and those obtained by FEM alone are com-

pared and shown to be in good agreement. In the present

CFBM analysis, the power conservation condition is satis-

fied to an accuracy of + 10-5 to 10-4.

II. ANALYTICAL FORMULATION

In order to minimize the details, only the H-plane

waveguide discontinuity problem shown in Fig. 1 will be

addressed. If an M-port device is assumed, the boundary

rQ encloses the inhomogeneous subdomain and the bound-

ary F = B u r, where r = U ~~=Or,,l, cmplekly encloses

the remaining homogeneous domain (Fig. 2).
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Fig. 1. Geometry of the problem and FEM region Q.

A. FEA4 Formulation

Using the technique introduced here, complex subdo-

mains such as dielectric or ferrite posts can be treated with

the FEM. With the finite element approach, the primary

dependent variables are replaced by a system of discrete

variables over the domain under consideration. Therefore,

the subdomain itself is discretized into finite elements. The

compatibility within the element and between element

boundaries is ensured by the choice of the shape function.

For this analysis, second-order triangular elements are

used. That is, within each element, the electric field EZ is

expressed in terms of the electric field at the corner and

midside nodal points by

E:={ N}~{Ez}, (1)

where {E, }, is the electric field vector corresponding to

the nodal points within each element and { ~ } is the shape

function vector.

Considering the excitation to be the dominant TEIO

mode and enforcing the continuity of the tangential mag-

netic field, the solution for the field inside the subdomain

Q (see Fig. 1) is obtained from Maxwell’s equations, using

the Galerkin procedure and integration by parts; the re-

sults can be expressed as

il{N} O{N}’
+ dy ay )

(i3{N} d{N}T d{N} d{N}T
+jK — ——

ax f.?y dy ax
1}

1–~r(l–j tan8)k~{N}{N}~ dxdy

-1

(2)

(3)

Fig. 2. BEM complex homogeneous region surrounded by r and B.

where

k;= CJ2COP0 (4)

and the permeability tensor [p],

[“1

o
[P] = ~: -PJ’ o (5)

o 0 p.

is used [5]. Here, the components of the {E, } vector are

the values of the electric fie~d EZ at all nodal points in the

subdomain Q; X= and Z, extend respectively over all

different elements and the elements related to the bound-

ary of rQ. 13quation (2) may be written as

[ ]{,Ez,Q)={[D/~}rj “)
[A]mQ [AIQ,Q {E,}r~

[A]r~,r~ [A]r~,~

where {E, }Q and {E, } r are, respectively, the vectors of
the electric field EZ at t~e nodal points inside Q and on

the boundary of Q; { dE,/dn } rQ is the vector of the

outward normal derivatives of E, at the nodal points on

the boundary of Q: [A]Q, Q, [A] Q,r~, [Alr~,~~ and [Al:~,r~

are the submatrices of [A]; and [D] is a square coefficient

matrix obtained through the integration of the shape func-
tion vector over the boundary rQ.

B. BEM Formulation

Consider the remaining region surrounded by 1’0,

rl,. . ., rM and B, as shown in Fig. 2. Using the funda-

mental solution +* [8] and Green’s formula, along with

Maxwell’s equations, the following equation for the field

E! can be obtained:

(7)

where

@*= $H~2)(kOr) (8)

$“ = ~ = ~kOH~)(kOr)cosa. (9)

Here, E! is the electric field at the field point p; H~2j(. j

and Hf)(. ) are the zeroth- and first-order Hankel func-

tions of the second kind, respectively; and a is the angle
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between the vector 7 and the outward unit normal vec-

tor Z

An approximate solution of (7) can be obtained by

discretizing the contour into boundary elements. These

boundary elements are similar to finite elements except

that the dimension is one less than the dimension of the

original problem. For the present analysis, second-order

boundary elements are used for the sake of compatibility

with the second-order finite elements.

Placing the field point Fon the boundary r’ and extract-

ing the contribution of the singularity, the following equa-

tion can be obtained [10]:

C. Analytical Approakh

Assuming that the dominant TEIO mode is incident

from port J, the analytical relation of the field and of its

normal derivative at the ports is found as [10]

: (x(’)=0, yp) dyJ1).— (12)

where

f,m,(Y(’)) =
f

j: sin(m7ry(Z)/Wi), m=l,2,3, . . .
1

H
dE:

(13)

dn’

aE:
#1.=@-(m~/w)2, m=l,2,3, ..-.

=z’[&x2%31e ~ (lo)
e (14)

aE:
The discretized form of (12) by boundary elements leads to

6’i2’ ,

{E=}r=28,,{t1}+ [zl,(g)r, (15)
where 8 is the angle b~tween boundary elements as speci-

fied in Fig. 2, and ~, extends over all elements on the

boundary l?’. Using matrix notation, (10) can be written where

more simply as

[[ H] O,[H],, -.-, [H] M,[H]B]

{E,}r,

{EZ}r,

{E,}r,

{E=}B

= [G]

r’.

aE,

(-}i3n’ r,

aE:

{-)an’ TM

aEz

{-)an’ ~

This BEM matrix equation will be used later.

[z], = - f (l/jp,m){fzm} x~$Jm(yJ’))
?71=1

. {Ar(xw==(),v$))} ~yj:, ~=l,z... > , M. (16)

Here, the compcments of the { f,~ } vector are the values of

f,m,(y(’)) at the nodal points on 1’1, and Z., extends over
the elements related to r,.

D. Combination of FEM and BEM

In order to reduce the computational effort, it is better

to enclose the inhomogeneous complex subdomain by an

actual or an artificial boundary as small as possible, apply

the FEM to the inhomogeneous subdomain, and use the

BEM in the remaining homogeneous domain taking into

account the waveguide configuration information.

On the complex domain boundary r’, the following

boundary conditions are taken:

(11)
{Ez}rO= {O} on 170 (17)

{E=}rQ={Ez}~ on rQ (18)

The whole prolblem addressed can then be finally formu-

lated as in (20),, which can be derived easily using (6), (11),
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(15), (17), (18), and (19):
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[
1 1[ I[Ho;”:~i:-~1

[!1[0IF””%l[01

In the above equation, [1] is an identity matrix, [0] is an

empty matrix, {Ez}r, and { dEz/dn’}rl (i = 0,1,. .-, M

and Q) correspond to electric fields and their normal

derivatives at the nodal points related to boundary

rO, rl,... , r~, I’~, respectively, and {O} is a null vector.

The solution of matrix equation (20) determines the

electric field distribution across each waveguide port and,

therefore, makes it possible to determine the scattering

parameters S,J of the TEIO mode, which are

Sjj= J(%=x( J)=o, yqjjl(yq U“(J)–l (21)
o

i #j. (22)

These last two equations represent the scattering param-

eters of the problem shown in Fig. 1 obtained using

CFBM, and it will be shown in the next section that this

method yields results which are reliable and accurate and

at the same time requires much less computer effort than if

the FEM were used alone.

HI. NUMERICAL RESULTS AND DISCUSSION

The coupled finite–boundary element method has been

implemented on a VAX-785 computer and many original

numerical and experimental results to verify the CFBM

have been obtained. The interpolation chosen for the BEM

is exactly the same as that for the FEM when field points

are located at boundary 17~, which helps to increase the

accuracy of the solution. Since no numerical derivatives

are needed, accurate results can be obtained without re-

quiring a large number of elements. For all the cases

presented below, the power conservation condition has

been found to be satisfied to an accuracy of &10-5 to

10-4.

—.

{o}

{o}
{o}
{o}
{o}

28,, { f,, }

28M, ( fM, }

{o}

(20)

As a first example, the Y junction with a TT1-109

triangular ferrite post shown in Fig. 3(a) is considered,

where the widths of the three waveguides are the same

(WI = WI = W3 = 22.86 mm). The results obtained with the

CFBM solution proposed here and a FEM solution [5] are

compared for the parameter values of interest. It is worth

mentioning that the CPU time required to solve this prob-

lem on a VAX-785 is about 21 minutes and 10 seconds

with the FEM alone, while it is about 3 minutes and 35

seconds with the CFBM. Moreover, the CFBM uses only

about 13 percent of the memory space required for the

FEM. A comparison shows that the results obtained are of

the same order of accuracy.

As a second example, the simple configuration of a

waveguide corner loaded with a dielectric post shown in

Fig. 4 is proposed. In this H-plane corner, the dielectric

constant c, and the width of the square dielectric post a

are used as optimization variables to minimize the scatter-

ing parameter ISll I~= at eight sampling points uniformly

distributed within the whole available band of the wave-

guide. Curve (1) is the optimization result obtained by

adjusting c, and a. Usually, however, .s, is available only

in limited values and therefore the optimization is done

using the dimension a, which can be easily changed. Curve

(2) shows the results when c, is set equal to 2.1 and only

the dimension a is used as the optimization variable.

Curve (3) gives the results with c,= 2.1 and AL= O, and

the numerical results are compared with experimental re-

sults represented on the graph by squares. The compar-

isons in the case without dielectric post shown by curve

(4), where previous FEM results are shown with dots, are

shown to be in good agreement.

Fig. 5 shows the field distribution inside the waveguide

corner. It can be seen that the dielectric post plays an

important role in concentrating the field, which results in a

reduction of the reflections due to the discontinuity.
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Fig. 4. Power transmission coefficient of a right-angle comer bend in
four different cases, Curves (1), (2), and (3) are for three different

dielectrics and curve (4) corresponds to the case where there is no
dielectric.
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Fig. 3. Performance of an X-band Yyrnction with aTT1-109trlangu-
lar ferrite post and comparison with FEM previous results. (a) Inser-

tion loss. (b) Reflection loss. (c) Isolation loss.

Although only H-plane discontinuities have been con-

sidered, the extension to the E-plane case is rather

straightforward. The method can also be easily extended to

planar circuits. The problem of analyzing waveguide dis-

continuties with partial-height posts using the CFBM is

presently under consideration.

TE,O
-

(b)

Fig. 5. Electric field distribution inside the right-angle corner bend of
the waveguide: (a) without dielectric load, koW/n =1.2; (b) with

dielectric load, a = fi/4W, kOW/m = 1.2, c,= 2.1.
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